
Leveraging LLMs for
Memory Forensics
A Comparative Analysis of Malware Detection

Key takeaway: Memory forensics with LLMs is feasible: reasoning boosts detection,
false positives remain high, and the human analyst remains responsible.

Jan-Hendrik Lang & Thomas Schreck, September 16th - 17th, 2025

1/18

Motivation

2/18

Motivation

3/18

Motivation

4/18

Motivation

● Expertise-Intensive: requires deep specialist knowledge & manual effort

● Data Overload: numerous plugin outputs, subtle IoCs to correlate

● Steep Learning Curve: difficult for less-experienced analysts

● Memory Forensics Importance: essential for detecting fileless malware & APTs

● Analyst Fatigue: overload increases errors and slows detection

● Underexplored AI Potential: unclear if LLMs can reduce effort while preserving accuracy

5/18

Research Questions

1. Detection Performance: How do different LLMs perform in detecting malware from
Volatility3 data?

2. Impact of Reasoning: Do reasoning-enabled (“thinking mode”) configurations yield
statistically significant improvements in detection quality?

3. Limitations & Error Sources: What drives false positives and false negatives, and can
adding baseline system knowledge reduce these errors?

6/18

https://github.com/jan-hendrik-lang/MemoryInvestigator

● Proof-of-Concept Prototype Goals
o Volatility3 automated
o Volatility3 output prepared for an LLM
o forwarding the processed output to an LLM and displaying the results
o to recognize anomalies on its own in the best case

● Result
o Development of a Streamlit app
o Available at: https://github.com/jan-hendrik-lang/MemoryInvestigator

● Features
o Automation Volatility3 Version 2.8.0
o Display and search of data as table and graph
o Preparation of the data as a user-defined tree−of−table1 for further use of the LLM
o LLM-supported analysis of the tree-of-table
o Dynamic creation of a RAG using PDF files or Malpedia Thread Reports

[1] D. Ji et al., “Tree-of-Table: Unleashing the Power of LLMs for Enhanced Large-Scale Table Understanding,” 2024, arXiv. doi: 10.48550/ARXIV.2411.08516.

Methods: MemoryInvestigator

7/18

https://github.com/jan-hendrik-lang/MemoryInvestigator

Methods: Tree-of-Table

Extract from psscan

(PID, PPID, ImageFileName,

CreateTime, ExitTime)

Start

End

File Enrichment

cmdline, dlllist, handles, …

data from pre-selected fields

Build Tree

PID: node

PPID: parent-child relationship

Volatility3 Modules:

● Process modules like psscan, cmdline, dlllist.

● Network modules like netscan.

● Malware-specific plugins like malfind, processghosting,

suspicious_threads.

● Privilege and persistence indicators like getsids and svcdiff.

8/18

Methods: Tree-of-Table

{

"name": "System Analysis",

"children": [

{

"name": "Processes",

"children": [

{

"name": "System",

"pid": 4,

"ppid": 0,

"SID": [

"S-1-5-18",

"S-1-5-32-544",

"S-1-1-0",

"S-1-5-11"

],

"ldrmodules": {

"InInit": false,

"InLoad": false,

"InMem": false,

"MappedPath": "\\Windows\\System32\\ntdll.dll"

},

"netscan": {

"Created": "2023-06-02T17:45:43+00:00",

"Owner": "System",

"Proto": "UDPv4",

"LocalAddr": "192.168.10.210",

"LocalPort": 137,

"ForeignAddr": "*",

"ForeignPort": 0,

"State": "LISTENING"

},

"netstat": {

"Created": "2023-06-02T17:45:43+00:00",

"Owner": "System",

"Proto": "UDPv4",

"LocalAddr": "192.168.10.210",

"LocalPort": 138,

"ForeignAddr": "*",

"ForeignPort": 0,

"State": "LISTENING"

}

}

]

}

]

}

{

"name": "System Analysis",

"children": [

{

"name": "Processes",

"children": [

{

"name": "System",

"pid": 4,

"ppid": 0,

"SID": [

"S-1-5-18",

"S-1-5-32-544",

"S-1-1-0",

"S-1-5-11"

],

"ldrmodules": {

"InInit": false,

"InLoad": false,

"InMem": false,

"MappedPath": "\\Windows\\System32\\ntdll.dll"

},

"netscan": {

"Created": "2023-06-02T17:45:43+00:00",

"Owner": "System",

"Proto": "UDPv4",

"LocalAddr": "192.168.10.210",

"LocalPort": 137,

"ForeignAddr": "*",

"ForeignPort": 0,

"State": "LISTENING"

},

9/18

Processes

├─ System (pid=4, ppid=0)

├── SID: S-1-5-18, S-1-5-32-544, ...

├── ldrmodules: ntdll.dll [InInit=False, InLoad=False, InMem=False]

├── netscan: UDPv4, 192.168.10.210:137 → LISTENING

├── Registry (pid=92)

├─── SID: S-1-5-18, S-1-5-32-544, ...

├─── ldrmodules: ntdll.dll [InInit=False, InLoad=False, InMem=False]

├─── netscan: UDPv4, 192.168.10.210:137 → LISTENING

└── smss.exe (pid=328)

Evaluation and Results

10/18

System Message:

You are a forensic RAM analyst assistant specializing in Windows memory analysis. Analyze the JSON tree
of Windows memory artifacts to detect intrusions or malicious activities. Cross-check your findings with
known threats and provide clear, specific reasons for flagging any anomalies (e.g., unusual parentchild
relationships, code injection, execution from nonstandard locations). If you are unsure, ask clarifying
questions, and if you don’t know, say so. Generate a structured forensic report highlighting confirmed threats
while minimizing noise. Data: “Tree-of-Table Data”

User Message: Analyze the data and determine whether there is an anomaly.

Evaluation and Results

● Test Scenarios:
o Clean Image,
o Process Injection (msfvenom),
o PowerShell Empire,
o QuasarRAT (Remote Access Trojan),
o MassLogger (keylogger),
o DarkCloud (trojan),
o LockBit (ransomware),
o LokiBot (stealer).

● LLMs for Comparison:
o OpenAI GPT-4o,
o OpenAI o1,
o Google Gemini 2.0 Flash,
o Google Gemini 2.0 Flash-Thinking,
o Grok 3,
o Grok 3 with enabled thinking mode.

11/18

Evaluation and Results

Performance Metrics:
● Accuracy,
● Precision,
● Recall,
● F1-score,
● ANOVA,
● t-tests.

Build Test
Enviroment

Select
Malware

Execute
Malware

Take
Memory
Image

Analyse
with LLMs
(240 trails)

12/18

● Experiment scale: 240 trials (8 scenarios × 1 image × 6 LLMs × 5 runs)

● Detection: All LLMs found malicious evidence in most scenarios

● Reasoning helps: “Thinking” modes consistently outperformed standard modes

● Different strengths: Models excel at different artifact types (e.g., network vs. script decoding)

● Performance pattern: Very high recall (often ≈100%) — low precision (precision often <20%)

● Blind spot: LockBit IoCs were outside available inputs → missed detections

● Common FP source: malfind outputs (e.g., MsMpEng.exe) frequently mis-flagged

Evaluation and Results

13/18

Distribution of F1-score by LLM

Evaluation and Results

14/18

Limitations

● Dataset Scope: one memory image per scenario; limited to Windows 10

● Data Coverage: only selected Volatility3 plugins; no registry hives, EVTX logs, or raw strings

● Model Dependence: results bound to specific LLM versions & modes (non-deterministic
behavior)

● Precision Gap: high false positive rate; not suitable as a standalone detection system

● Generalizability: performance on other OS, larger datasets, or different attack techniques
remains untested

15/18

Future Work

[2] Gordon Fraser. 2021. Creating a Baseline of Process Activity for Memory Forensics.

● Broader Data Sources: include registry hives, event logs, and memory strings

● Improve Precision: integrate baseline system2 knowledge to filter benign processes

● Advanced LLM Integration: fine-tune models on forensic data; evaluate next-gen LLMs

● User Studies & Deployment: measure analyst time savings, detection gains, usability

● Tool Enrichment: expand from Volatility3 towards MemProcFS or Velociraptor

● Protocol Experimentation: test Model Context Protocol (MCP) as an alternative to tree-of-tables

16/18

Conclusion

● Feasibility & Value: LLMs can sift memory data and highlight likely IoCs

● Recall vs. Precision: strong recall, but very low precision (many false alarms)

● Context Matters: success depends on the breadth of forensic input data

● Human Essential: analysts remain critical due to false positives & blind spots

● LLMs as Support: assist in triage, improve interpretability, not a replacement

17/18

AI be like:

everything is malware

Contact Details

Jan-Hendrik Lang
jan-hendriklang@hotmail.de

Thomas Schreck
thomas.schreck@hm.edu

GitHub Repo:

https://github.com/
jan-hendrik-lang/
MemoryInvestigator

18/18

https://github.com/jan-hendrik-lang/MemoryInvestigator
https://github.com/jan-hendrik-lang/MemoryInvestigator
https://github.com/jan-hendrik-lang/MemoryInvestigator
https://github.com/jan-hendrik-lang/MemoryInvestigator
https://github.com/jan-hendrik-lang/MemoryInvestigator
https://github.com/jan-hendrik-lang/MemoryInvestigator
https://github.com/jan-hendrik-lang/MemoryInvestigator

	Folie 1: Leveraging LLMs for Memory Forensics
	Folie 2
	Folie 3
	Folie 4
	Folie 5
	Folie 6
	Folie 7
	Folie 8
	Folie 9
	Folie 10
	Folie 11
	Folie 12
	Folie 13
	Folie 14
	Folie 15
	Folie 16
	Folie 17
	Folie 18

